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Abstract

The paper discusses different approaches to cal-
ibrate forward components such as dividends or
borrow rates based on a given set of American op-
tion quotes. While deducing forward prices from
European option prices is straight forward due to
the put-call parity, it is not directly obvious how to
proceed if only American option prices are avail-
able. We describe the complexity of this problem
and we analyze a widely used practitioners ap-
proach using implied volatilities. An illustrative
example is used to demonstrate why this ad-hoc
approach exhibits undesirable properties and can
lead to unreasonable results. Finally, we propose
a different algorithm to circumvent these problems.

1 Forward Fitting
Across all assets classes, forward curves are a
central element of derivative markets and a com-
mon exercise within controlling and trading de-
partments of all market participants is to construct
an internal theoretical forward curve T 7→ F t(T )
for all maturities T > 0 for an arbitrary tradable
asset, where F t(T ) denotes the theoretical for-
ward price for delivery at maturity T . Relying on
well-known economic replication principles, mar-
ket participants typically represent a theoretical
forward curve F t using different compononents
x1, . . . , xk, such as a funding curve, storage costs,
some form of convenience yield, a borrow curve
and - within equity markets - dividends. Let us
assume, that all but one of the relevant forward
components for the construction of the theoretical

forward curve are directly observable in the mar-
ket and known. The remaining unknown forward
component is denoted by x and the representation
of the theoretical forward is given by:

F t(T ) = f(T, x(T ))

The latent factor x can be thought of either an illiq-
uid or unobservable forward component or sim-
ply a fudge factor. We assume that for a fixed
maturity T , the theoretical forward price F t(T )
depends strictly monotonically on xT = x(T ),
which allows us to deduce the value xT given the
value F t(T ). In the following subsections, we will
explain how values for the unknown latent factor
curve can be obtained for different categories of
market information.

1.1 Forward quotes

In markets, where quotes for physically or cash
settled forward contracts, ie. bid and ask prices
F b(Ti) and F a(Ti), are directly observable in the
market for a set of expiries T1, . . . , Tn, we can di-
rectly derive constraints for the values xT i of our
latent factor from the market conformity condition
for the theoretical forward price:

∀i ∈ {1, . . . , n} : F b(Ti) ≤ F t(Ti) ≤ F a(Ti)

Obviously, theoretical forwards - and consequently
also the values xT i of the latent factor - are not
uniquely defined in the case of non-trivial bid-ask-
quotes. Furthermore, if no other market informa-
tion about forward prices between and outside of
quoted expiries is available, then the theoretical
forward curve F t(T ) is subject to the individual
shape of the used intertemporal inter- and extrapo-
lation function.
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1.2 European option quotes

In markets where no direct forward quotes, but
European option quotes are available, the situation
is very similar. For a given strike K and maturity
T , we denote the European call option price for
this strike and maturity by C(K,T ) and the corre-
sponding European put option price by P (K,T ).
In the absence of arbitrage, the put-call parity im-
plies for all strikes K, independently of the model
used to price the options, the following equality:

erT · (C(K,T )− P (K,T )) +K = F t(T ) (1)

where r denotes the continuously compounded
yield for maturity T for an appropriate discount
curve. If for a quoted strike K in maturity T = Ti,
we denote by Cb, P b and Ca, P a the bid and ask
prices for the corresponding call and put option,
then, it is straightforward to derive the following
strike-specific forward quote from equation (1):

F b(K,Ti) := erT · (Cb − P a) +K

F a(K,Ti) := erT · (Ca − P b) +K

If different strikes Kj , j = 1, . . . , n are available
for expiry Ti, then all quotes can be used to derive a
sharper constraint for the theoretical forward price
F t(Ti). Defining

F b(Ti) = max
K

F b(K,Ti)

F a(Ti) = min
K

F a(K,Ti)

we obtain the following inequality that must be ful-
filled by the theoretical forward price F t:

F b(Ti) ≤ F t(T ) ≤ F a(Ti)

As a consequence, forward fitting based on Euro-
pean option quotes is comparable to the situation
where direct quotes for the forward are observable
in the market.

1.3 European implied volatility
quotes

Among option traders and market makers, it is
very common to consider implied volatilities in-
stead of option prices while calibrating the relevant
market input parameters. More precisely, market
participants use an option pricing model, such as
e.g. the Black-Scholes model to calculate the cor-
responding implied volatilities σ(K,T ) from the
given set of bid-ask quotes for European options.

As a result, we obtain bid and ask volatilities from
the given quotes for the call and put option with a
given strike K and given expiry T :

σbP (K,T ) ≤ σaP (K,T )

σbC(K,T ) ≤ σaC(K,T )

The obtained bid-ask values for the implied volatil-
ities depend critically on the theoretical forward
curve F t(T ) used for the implied volatility calcu-
lation1. For a fixed strike K and maturity T , we
obtain the following result:

F b(K,T ) ≤ F
t(T ) ≤ F aK(T )

⇔
[σbP , σ

a
P ] ∩ [σbC , σ

a
C ] 6= ∅

In other words, the theoretical forward price is con-
sistent with the bid-ask forward quote implied from
the European option quotes if and only if, the de-
duced implied volatility quotes for calls and puts
have a non-empty intersection. This result is illus-
trated in figure (1).

1.4 American Option Quotes

In markets where only American option quotes
are available, the situation is slightly different as
American call and put option prices do not feature
a put-call parity comparable to equation (1). In-
stead, the assumption of absence of arbitrage im-
plies only the following inequalities:

S0 −K ≤ c(K,T )− p(K,T ) ≤ F t(T )−KerT

where we denote the price of an American call op-
tion with strike K and maturity T by c(K,T ) and
the respective price of the put option by p(K,T ).
As before, r denotes the continuously compounded
yield for maturity T for an appropriate discount
curve. To prove the first inequality, we consider a
portfolio of long an American put, short an Ameri-
can call and long a share of the underlying stock. If
the American call is exercised we deliver the stock
and get an amount of K in cash. In this case, at
maturity we have cash of at least K. If the option
has not been exercised early and ST > K, we de-
liver the stock and receive K in cash and finally
if ST < K we exercise the put and receive K in
cash. Therefore we have a payoff of at least K in

1Remark: The discount curve plays another important role
in the implied volatility calculation, but it is straightforward to
calibrate an appropriate discount curve from a given set of op-
tion quotes and therefore we stick to our assumption that the
discount factors are known.
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(a) The quotes do overlap, the theoretical forward is con-
sistent with the option quotes.

(b) The quotes have an empty intersection, the theoreti-
cal forward is not consistent with the option quotes.

Figure 1: Implied volatility quotes for put options
(blue) and call options (red) for different values of
the theoretical forward used to calulcate the im-
plied volatilities.

all situations which leads to the first inequality and
a similar argument leads to the second inequality
and results in a lower bound for the theoretical for-
ward price:

F t(T ) ≥ c(K,T )− p(K,T ) +KerT

Unfortunately this inequality is not sharp enough
to calibrate the latent factor xT in a compara-
ble way as described in the case of European op-
tions. A practical approach - seemingly best-
practice amongst traders - computes the implied
volatilities from the American option quotes and
then, in a next step uses these implied volatilities to
compute the respective European option prices and
finally computes quotes for the forward price using
equation 1. As the American implied volatilities
depend on the assumed forward price, this proce-

dure is repeated using the newly calibrated forward
price for again computing the American implied
volatilities and European option prices until con-
vergence in the implied forward price is achieved.
For a fixed strike K, fixed maturity T and - for
the ease of presentation - assuming zero bid-ask
spread, this algorithm can be summarized as fol-
lows:

Algorithm 1 Implied Forward Fitting via Euro-
pean put-call Parity

Initialize k = 0, x0, F0 = F (x0)
while k < kmax and ‖xk − xk−1‖ > ε do

compute σc(Fk) and σp(Fk)
compute C(σc(Fk)) and P (σp(Fk))
compute Fk+1 = erT (C − P ) +K
determine xk+1 s.t. F (xk+1) = Fk+1

k ← k + 1
end while

This approach is equivalent to treating the
American implied volatilites as European implied
volatilites and adjusting the theoretical forward
price used for the implied volatility calculation
such that the intersection of implied volatility
quotes of call and put options is non-empty - com-
parable to the methodology described for Euro-
pean options and illustrated through figures (1a)
and (1b). With other words, this algorithm tacitely
relies on the assumption that the implied volatil-
ity of an American call and put option is somehow
related to the implied volatility of the respective
European counterparts which in turn would imply
that the implied volatility of American calls and
puts with same strike should have very similar im-
plied volatilities. Note that this assumption may
be valid in cases where early exercise is not very
likely due to low rates and dividends but in general
this assumption is not fulfilled.

To clarify that in general situations this intuition
leads to wrong results, let us consider the following
example: We assume that the underlying dynamic
is given by a simple diffusion model with zero drift
and a determinstic time dependent volatility func-
tion:

dSt = St σ(t) dWt, S0 = 100 (2)

Furthermore, we assume a proportional dividend
of δ = 5% at t = 0.5:

St = (1− δ) · St− for t = 0.5

The given model implies a time dependent but
strike independent Black-Scholes implied volatil-
ity surface for European options. The volatil-
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Figure 2: Implied volatilities for American call
and put option prices as a funtion of the strike base
on model (2).

ity function σ(t) is chosen such that the implied
volatilities exhibit a linear term structure starting
with a value of 20% at valuation date t = 0 and ris-
ing to 30% implied volatility at one year (t = 1.0).
Within the given model, we calculate American
call and put option prices for options with different
strikes maturing in one year. These option prices
are calculated using the model consistent forward
price F (T ) = 95 for the one year maturity and
these prices will now be used as input for algorithm
1. Figure 2 displays the obtained implied volatili-
ties. and we observe significant differences in call
and put implied volatilities although the theoretical
forward used to calculate the implied volatilities is
equal to the model forward. We clearly see the ef-
fect that the implied volatility of the American call
is lower than the implied volatility of the respective
put due to the probability of early exercise and the
term structure of volatility.

If we apply algorithm 1 in order to calibrate the
dividend yield based on the model prices, the re-
sulting calibrated dividend yield δ? equals approx-
imately 6%. Table 1 shows the iteration steps of
the algorithm starting with a zero dividend yield.
It is quite obvious that convergence is reached very
fast but unfortunately not to the correct value.

#iter dividend
0 0%
1 4.80%
2 5.64%
3 5.86%
4 5.92%

Table 1: Iterates of Algorithm 1 applied to model
prices generated with model (2).

Figure 3 visualizes the impact of the assumed
discrete dividend δ on the corresponding theoret-

ical implied volatility of a American call option
at different strike levels K. A larger dividend δ
and a smaller strike K imply a higher probabil-
ity for early exercise and therefore a higher devi-
ation from the terminal European implied volatil-
ity at maturity of 30%. The American put im-
plied volatility instead does not react to a change
in strike or dividend yield and is identical to its Eu-
ropean counterpart with value 30%. Consequently,
if the implied volatilities of European options ex-
hibit a non-trivial termstructure and if the under-
lying pays a non-zero dividend, then the intuitive
trader’s approach of matching implied volatilities
also in the case of American options will lead to
wrong results.

Figure 3: Implied volatilities for American call
option for different strikes as a funtion of the divi-
dend yield for model (2).

1.5 A practical alternative

The key misconception of the above approach is
the use of implied volatilities as a criteria for accu-
racy of the forward price in the case of American
option quotes because American implied volatilites
are not directly linked to a single maturity. There-
fore we propose to fit the forward price using the
option prices directly.

Let us assume that we have a parametrization
for the European implied volatility surface depend-
ing on some parameters ζ ∈ Rn where we get
for each strike K and maturity T a European im-
plied volatility σ(ζ,K, T ). For a given expiry T ,
we have market prices {ci} and {pi} of American
call and put options for a set of strikes {Ki}. We
further denote the price of an American call op-
tion with strike Ki and maturity T using the local
volatility model2 with implied volatility σ(ζ, ., .)

2Although one could use any model we propose to use the
local volatility model since the pricing of American options in
this model is quite robust and efficient in contrast to other more
realistic models such as stochastic volatility models. Note that
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and theoretical forward price F t(T, x) by cti(ζ, x)
(and pti(ζ, x) for the put respectively). Let us as-
sume that for xT := x0 fixed we find a ζ0 mini-
mizing the least square sum of differences between
market and model prices:

f(ζ, x) =
∑
i

(ci − cti(ζ, x))2 + (pi − pti(ζ, x))2

We now distinguish three different cases:
Case 1: Let us assume that for all i

ci > cti(ζ
0, x0) and pi < pti(ζ

0, x0)

or
ci < cti(ζ

0, x0) and pi > pti(ζ
0, x0).

Due to the monotonicity of c and p w.r.t F , we
know that we can reduce each summand of the
least square error and therefore the complete sum
by adjusting x0 to x1 so that the resulting theoret-
ical forward F t(T, x1) is smaller than F t(T, x0).
If the reverse of these inequalities holds true, we
adjust x0 to x1 such that the forward is increased.
In both cases we are decreasing each error term of
the cost function which is leading to an overall re-
duction of the cost. Therefore the new value x1

exhibits a reduced overall fitting error. Based on
the new value x1, the volatility parametrization is
calibrated leading to a new value ζ1(x1).
Case 2: Let us assume that for all i

ci > ctheoi (ζ0, x0) and pi > ptheoi (ζ0, x0)

or the reverse holds true. In this situation, it is pos-
sible to reduce the cost function by reducing the
overall level of implied volatility, contradicting the
optimality of ζ0. Therefore this case cannot occur
(up to rounding errors).
Case 3: Let us assume that the above inequalities
do not hold for all i. In this case, it is difficult to
determine whether the difference between the the-
oretical and the observed prices is due to the fit of
the implied volatility surface or due to the used the-
oretical forward. If this case occurs, there is not
enough information to proceed with the forward
fitting and we stop the algorithm3.

For the ease of presentation, we provide the
pseudo-code of the fitting algorithm for the single

although the choice of model influences the estimated forward,
to our experience the differences are quite small which moti-
vates the use of the local volatility model.

3If we assume, the the chosen volatility parametrization is
flexibel enough to fit market implied volatilities, this case is
fortunateily of negligible importance. From our experience it
is sufficient to handle this case by applying one single iteration
of the optimization w.r.t. x in order to reduce the overall least
square error.

strike case, where the cost function f consists of
only one summand:

Algorithm 2 Implied Forward Fitting by nested
Volatility and Forward Fitting

Initialize k = 0, x0

while k < kmax and ‖xk − xk−1‖ > ε do
ζk = argminζ f(ζ, x

k) (Fit of volatility)
if (ct > c and pt > p) or

(ct < c and pt < p) then
stop

else
xk = argminx f(ζk, x)

end if
k ← k + 1

end while

Obviously, this algorithm can be easily ex-
tended to handle non-trivial bid-ask quotes, mul-
tiple strikes and multiple expiries.

1.6 Concluding Remarks

We have analysed a common practitioners ap-
proach to calibrate forwards in the case of Ameri-
can options and demonstrated by means of a sim-
ple and illustrative example why this method can
lead to incorrect results. We proposed a method
based on a nested calibration of implied volatil-
ities and forward values where the cost function
includes prices rather then volatilities. This ap-
proach cicumvents the aforementioned problems
of the practitioners approach.


