Towards a fast and robust deep
hedging approach

by FABIENNE SCHMID!, DANIEL OELTZ?

Summary

We present a robust Deep Hedging framework for the pricing and hedging of option portfolios that significantly improves
training efficiency and model robustness. In particular, we propose a neural model for training model embeddings which
utilizes the paths of several advanced equity option models with stochastic volatility in order to learn the relationships
that exist between hedging strategies. A key advantage of the proposed method is its ability to rapidly and reliably adapt
to new market regimes through the recalibration of a low-dimensional embedding vector; rather than retraining the
entire network. Moreover, we examine the observed Profit and Loss distributions on the parameter space of the models
used to learn the embeddings. The results show that the proposed framework works well with data generated by complex
models and can serve as a construction basis for an efficient and robust simulation tool for the systematic development of
an entirely model-independent hedging strategy.

Keywords: Deep Hedging, Parameterized Neural Networks, Multi-Task Learning, Quantitative Finance, Hedg-

ing strategy

1 Introduction

Recent progress in deep learning has achieved remark-
able results in many areas, such as computer visions, im-
age classification or natural language processing. Espe-
cially, with the increase in the availability of observational
and numerical datasets and advances in capabilities of
computational power, complex and time-intensive algo-
rithms are now feasible for various practical uses. In par-
ticular, deep neural network models excel at processing
vast amounts of data as well as identifying complex rela-
tionships embedded in the data, and are perfectly suited
for addressing optimization problems.

Although, deep learning was developed in the field of
computer science, its application has gained increasing
attention within the financial sector, too, leading to a
growing number of deep learning models that can pro-
vide real-time working solutions, such as stock market
forecasting or credit risk assessment (cf. [1]). A special
case of the practical application of deep learning algo-
rithms in finance and banking lies in hedging derivatives
(so-called Deep Hedging), where a neural network is used
to derive hedging strategies for a portfolio of derivatives
by minimizing a chosen risk measure. Although, deep
hedging presents an enhanced alternative to traditional
sensitivity-based methods in real markets, a particular
challenge of this task is the relatively limited availabil-
ity of financial data (e.g., stock prices) since an exten-
sive amount of input data is usually required to calibrate
neural networks. Moreover, even if a large amount of his-
torical data is available, predicting future trends, future

IRIVACON GmbH, f.schmid@rivacon.com
2Fraunhofer SCAIL daniel.oeltz@scai.fraunhofer.de

variance, or the future distribution remains a highly com-
plex task.

Various studies have considered synthetic training paths,
which aim at resembling the actual financial market dy-
namics and are generated by a single stochastic model
with fixed parameters to investigate the performance and
behaviour of the Deep Hedging framework. For instance,
[2] uses data generated by the Heston stochastic volatil-
ity model, while [3] applies the rough Bergomi model.
However, in financial markets the underlying dynamics
change quite frequently, leading to a relative high param-
eter uncertainty and model risk. An approach towards
the inclusion of this uncertainty in a deep learning ap-
proach for hedging is offered by Liithkebohmert et al.
(2021). The authors suggest a deep hedging approach
under parameter uncertainty for generalized affine pro-
cesses and show their neural network model’s robustness
against changes in the dynamics of the underlying. Nev-
ertheless, the performance of neural network models out-
side their training regime can be quite poor, such that in
order to learn a new task (i.e., a hedging strategy under
paths not seen in training process) it would be desireable
to train a new neural network from scratch. This can be-
come relatively quick computationally expensive. More-
over, given that models in this context typically undergo
extensive validation, requiring significant human effort,
the process of recalibrating or training a new model from
scratch can be resource-intensive and costly in this regard
beneath the computational aspects.

Recently, it has been recognized that multi-task learning
and especially task embedded networks can remedy this

Fabienne Schmid (RIVACON GmbH), Daniel Oeltz (Fraunhofer SCAI)

Page 1

situation. In particular, it has been demonstrated, that
this approach performs well in the context of solving
problems in finance, such as learning a family of models
for given data an then recalibrate the respective parame-
ters to new data, and it has also been successfully applied
in the context of time series forecasting (e.g. [4]), natural
language processing (cf., [5]), and many other applica-
tions (see for instance [6]). More specifically, task embed-
ded networks can help to utilize a trained neural network
outside of the parameter range where it was originally
trained by encoding specific tasks using an embedding
layer, which is then combined with other input features.
Thus, task embedded networks make use of the previ-
ously learned neural network while adjusting it relatively
fast and robust for a new parameter regime an there-
fore provide an effective approach with reduced compu-
tational effort (compared to other MTL architectures).
With the motivation and the background described above
the plan of the work reported here has been to apply a
simple multi-task learning architecture to learn a hedging
strategy under model uncertainty. To this end, we inves-
tigate the performance of the Deep Hedging framework
beyond using training paths generated by just one model.
In particular, we implement and analyze a task embedded
neural network, which is able to derive hedging strate-
gies for market dynamics with different properties than
that of the training dataset.

The article is structured as follows: Section 2 provides an
overview of the Deep Hedging framework under model
uncertainty and describes the design of our neural net-
work. Section 3 presents several numerical experiments
that provide insights into the behaviour and performance
of the framework. A conclusion and brief outline for fu-
ture work is given in section 4.

2 Methodology

In this section, we provide a compact description of the
deep hedging framework, and discuss our particular im-
plementation of this approach for hedging under model
uncertainty. Note that for mathematical details about the
original deep hedging framework, the reader is referred
to [2].

2.1 PnL modelling

We assume a discrete time financial market with d hedg-
ing instruments (e.g., stocks), which are denoted by the
stochastic process S, a finite time horizon 7" and n dis-
crete trading dates 0 = tg < t1 < ... <t, =1T.

The objective is now to hedge against a given contingent
claim Z, which is completely known at T, using a hedg-
ing strategy § = (8x)k=o,...n—1. In particular, &, € R? de-
scribes the amount of d hedging instruments in the port-
folio V' (owned by the hedger) at time ¢;. The value of
the portfolio for Z at maturity T is then given by

PHLT(pOaZ76) = Z+p0+(6S)Ta (1)

n—1

(0-5)r = Z Ok (Sk+1 — Sk)

k=0

(2)

and py > 0 is the exogeneously given fair price (i.e., pg is
calculated separately from our described method).

In the case of no transaction costs, we solve the following
optimization problem to find an variance optimal hedg-
ing strategy for Z using a vector of hedge instruments
(i.e., we want to find the best hedging strategy ¢ to mini-
mize the losses of the PnL of a given portfolio):

infsenE [(Z+ (6 9)r)?], 3

where H summarizes all valid hedging strategies. Note
that instead using variance as a measure of hedge qual-
ity, we could also use utility functions or convex risk mea-
sures within the cost function, see [2].

To solve the optimization problem (3), numerically in
the framework of a neural network we replace as in [2]
the set of all valid hedging strategies by a certain subset
Heo € H whose hedging strategies o depend on a dis-
crete number of neural network parameters © € N, N >
0 (i.e., network weights as parametrization for hedging
strategies), such that equation (3) becomes

infsenoE [(Z + (6 : S)T)Q}

= iIlf@eg]E [(Z + (6 . S)T)Q] . (4)
In [2], the utility of this hedging approach is shown for
Black-Scholes (BS) and Heston models. However, in each
case only a single model with fixed parameters is consid-
ered. To achieve a deep learning approach for hedging
option portfolios under model uncertainty, we have ex-
tended this framework by a method that is based on key
ideas from word embeddings in natural language pro-
cessing, and is along the lines of the very simple neu-
ral network architecture for multi-task learning as intro-
duced in [4] and applied by [7] to solve problems in fi-
nance (i.e., the calibration of spread curves). The latter
highlighted in a suite of numerical experiments the utility
of the task-embedded neural network to learn based on
a set of different models for given data rather than just
learning for a specific data sample generated by a sin-
gle model, which makes it relatively easy to recalibrate
model parameters to new data. We adjust this method to
learn hedging strategies and include aspects from Liithke-
bohmert et al. (2021) for pricing and hedging under un-
certainty. In the following we give a very quick overview
of the idea behind multi-task learning and discuss a par-
ticular, simple neural network architecture of this method
using an embedding layer for deep hedging.

2.2 Neural network with Embedding

In multi-task learning, there are generally two concepts
for sharing knowledge between tasks: soft parameter
sharing and hard parameter sharing. Within the former
approach, each task has its own neural network model

Fabienne Schmid (RIVACON GmbH), Daniel Oeltz (Fraunhofer SCAI)

Page 2

and similarities between tasks are maintained through
regularization techniques, while the latter approach in-
volves using a shared set of layers for all tasks, with some
specific layers dedicated to individual tasks (and there-
fore, requiring less parameters compared to soft param-
eter sharing). In this study, following [7], we focus on a
relatively simple multi-task learning architecture, which
belongs to the category of hard parameter sharing and
is called task embedding network. Note, that we refer to
this in the following of this article as parameterized neu-
ral network (PNN).

The general idea of multi-task learning can be formulated
using m learning tasks 7;”;, which are accompanied by
a training dataset consisting of n; training samples, re-
spectively. Following [8], a definition of multi-task learn-
ing then reads: Given m learning tasks 7,”,, where all the
tasks or a subset of them are related, multi-task learning
aims to learn the m tasks together to improve the learning
of a model for each task T; by using the knowledge con-
tained in all or some of other tasks.

To further illustrate this approach and especially the PNN
architecture, we schematically visualize its concept in
terms of learning a hedging strategy in Figure 1 and de-
scribe how this approach can help to utilize a neural net-
work outside the parameter regime (i.e., within a family
of parameterized models) where it was originally trained
on, which can be a particularly challenging task in the
context of stock price dynamics.

|

Embedding layer

of dimension [- -
1 Input: Simulated stock price

dynamics using multiple
models j for n paths

Parameter vector

] J
pl'""l Xl n(t)

\ , S
Learnab{eu e 8 o o Concatenation
Parameters S Sr ek e

] ® [[

Qutput:
Hedging Strategy

Figure 1: Parameterized network architecture.

Suppose, that we have as an input a training dataset
Dsources Which consists of simulated stock price dynamics
from a class of m different models, i.e., with each model
1 < j < m we simulate n sample paths for the time de-
pendent state variable. Note, that for simplicity we con-
sider the same number of sample paths for each model.
Then, a task, such as a hedging strategy consistent with
Dsource, can be learned using a neural network. However,
there may be a need to learn a new task (like solving a
hedging problem) within D;4,¢4ct, which does not align

with the model parameters or assumptions in Dg,y,-ce and
which consists of data samples from a different model,
such that Dtarget 7& Dsource‘

Deep learning with PNNs aims to enhance the new task
by leveraging knowledge from Dgyyce. Without embed-
ding, the neural network trained on Dg,y... Would be
discarded, requiring a new neural network to be trained
from scratch with a large amount of data from Dy,yge:-
PNNs avoid this by utilizing information from the Dgyce
and using only a small amount of data from D, ge: to
modify the parameters of the previously trained neural
network.

Thereby, the m different models are encoded by (dis-
crete) TaskIDs (i.e., integers j), assigned as input to the
embedding layer. Then an embedding layer of dimen-
sion [is utilized to transform these integers into a cor-
responding model-specific parameter vector p; € R! for
each model. By concatenating the results of the embed-
ding space with the other input data, the input for the
main neural network, which remains consistent across all
models in terms of the network weights, is defined. Dur-
ing training, each parameter vector is fine-tuned by opti-
mizing the weights of the embedding layer.

If we assume that we have to calibrate the neural net-
work to additional training data (i.e., new data from
a new model is available, which is encoded by a new
TaskID), then one simply needs to find a new parame-
ter pnew € R' and get a model for this task. Note that,
for simplicity, we chose the start value for the parameter
as the average over all parameters that have been cali-
brated so far. As only the low-dimensional parameter vec-
tor is adjusted, the risk of overfitting is significantly mit-
igated. Therefore, this approach remains applicable even
when only a limited training dataset is available, mak-
ing it particularly advantageous in our case, as it enables
adaptation to changing market conditions through recal-
ibration using only the most recent data. Furthermore, if
the overall model, including the parameter vector, has al-
ready undergone comprehensive validation and testing,
an extensive re-evaluation after recalibration may not be
necessary. This can significantly reduce both the time-to-
market and the associated human effort.

3 Models

In this article, simulations of time dependent stock price
processes S = {S(t),0 < t < T} are performed by four
different models, i.e., the geometric Brownian motion,
the Heston Stochastic Volatility model and its generaliza-
tion allowing for jumps as well as the Barndorff-Nielsen-
Shephard model (cf. [9]). In the following we briefly de-
scribe their stochastic differential equations.

3.1 Geometric Brownian Motion

The geometric Brownian motion (GBM) is a widely-used
continuous-time stochastic model to describe stock prices

Fabienne Schmid (RIVACON GmbH), Daniel Oeltz (Fraunhofer SCAI)

Page 3

3.2 Heston Stochastic Volatility Model

in the BS model. Its stochastic differential equation takes
the following form

dS = pSdt + o SAW, 5)

where W is a one-dimensional Brownian motion. The pa-
rameters i, and o denote the drift and volatility constants.

3.2 Heston Stochastic Volatility Model

Next, we consider stochastic volatility models, where the
volatility is allowed to be a random variable themselves
and is additionally governed by a stochastic differential
equation, such that the simulation of the stock price pro-
cess is one step closer to reality. The Heston model is the
most classic stochastic volatility model and its system of
stochastic differential equations is given by

dS = oSdW, (6)

do? = K(n — 0‘2)dt + OodW, 7
where W and W are two correlated one-dimensional
Brownian motions with Cov[dWdW] = pdt. Note, that
the variable ¢ now controls the volatility of X by a
mean-reverting stochastic process instead of a constant.
Thereby, the parameters «,7 and # denote the rate of
mean reversion, the long-run average variance of the
price and the volatility of the volatility (i.e., the variance
of o), respectively.

3.3 Heston Stochastic Volatility Model with
Jumps

We also consider an extension of the Heston model by
a jump process in the stock prices, where jumps occur
as a Poisson process. Hence, the stochastic differential
equation for S is supplemented by a Poisson process
N = {N(),0 < t < T}, which is independent of W
and W and has an intensity parameter A > 0, such that
E(N) = A\t

dS =...— ASp;dt + SJAN, (8)

while the stochastic differential equation for the volatil-
ity remains unchanged. Here, J denotes the jump size,
which is lognormally, identically and independently dis-
tributed over time with unconditional mean p; and stan-
dard deviation of log(1 + J) as

)

0.2
7y =& (log(1-4107) = 03).

where A denotes a Normal distribution.

3.4 Barndorff-Nielson-Shephard Model

Finally, the Barndorff-Nielson-Shephard (BNS) model is
specified by the stochastic differential equations

2

dZ = (—\k(—p) — %)dt +odW + pdzy, (10)

do? = —\o?dt + dzyy, (11D

where X describes a positive constant, Z = log(.S) is the
log-price process and the volatility is modeled by an Orn-
stein Uhlenbeck process driven by a compound Poisson
process, i.e.,

(12)

N
2t = E Tn,
n=1

with a Poisson process N = {N(¢),0 < ¢t < T} which
has an intensity parameter a such that E(N) = at and
{z,,n = 1,2...} is an independent and identicall dis-
tributed sequence, where each x,, follows an exponential
law with mean b~—'. Moreover, the constant p describes
the correlation between the log-price and the volatility
and the function k(u) denotes the cumulant generating
function of z; and is defined by

—au
b+u

k(u) = logE[exp(—uz1)] = (13)

4 Numerical experiments

In this section, we study the accuracy and efficiency of
our proposed deep hedging framework under model un-
certainty. If not stated otherwise, we specify the setting of
the PNN as follows: The neural network has 3 inner lay-
ers with 128 neurons each and we apply to all inner lay-
ers SELU-activation functions. The algorithm is coded
in Python using the Tensorflow-environment, in which
we execute the algorithm with a batch-size of 1024, an
Adam optimizer with 1000 epochs and an exponentially
decaying learning rate with an initial value of 0.0005. The
learning rate is reduced during training by an exponential
schedule so that the final learning rate equals 0.0001.

4.1 Results under a family of GBM models

In our first case study, the goal is to hedge a short at-the-
money European call option position with strike K = 1,
So = 1 and payoff (S — K)* for T = 30/365, daily re-
balancing (i.e., n = 30) and trading dates t; = i/365 for
1 =0,...,n. For simplicity, only d = 1 hedge instrument
is considered in the market (i.e., the underlying stock
price S;) and we simulate S; under the GBM framework.
Given our objective of developing a hedging strategy ca-
pable of adapting to new market regimes using limited
training data, we refrain from relying on a single model
with fixed parameters. Instead, we compose the training
dataset using paths simulated for several GBM models
with different volatility parameters, i.e., we set u© = 0
and sample the volatility parameter such that o is uni-
formly distributed on [0.1,0.8]. Because the considered
stock price process is used to model stock prices in the BS
framework, it offers a possibility to compare the results
of our PNN to the analytically calculated solutions.

First, we analyze the performance of our PNN in relation

Fabienne Schmid (RIVACON GmbH), Daniel Oeltz (Fraunhofer SCAI)

Page 4

4.1 Results under a family of GBM models

to the number of training tasks and the number of simu-
lated paths per task used in the training data.

—— 8
0.2 —o— 16
—eo— 32
0.1
(o)}
=
3
S 001
Q
£
[0}
_01 4
_02 4
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

volatility

Figure 2: Volatility of single GBM tasks versus learned
one-dimensional embedded value of the respective task.

In Figure 2 we depict for several tasks (i.e., the train-
ing data consists of 8 (blue), 16 (orange) and 32 (green)
different GBM models with 1 = 0 and volatility param-
eters o € [0.1,0.8]) the corresponding parameter vector
as a scatter plot. We clearly see a (almost linear) mono-
tonic dependency between the volatility parameter and
the embedding. Moreover, we observe that an increasing
number of different tasks does not affect the structure of
the resulting embedding significantly.

0.05 4 —8— mean of std dev of PnL
=== PnL BS hedge, vol=0.1
----- PnL BS hedge, vol=0.8
= 0.04
o
Y
)
5
-3 0.03 A
.o
>
(]
o°
T 0.02
©
]
c
©
ko
0.01 4
0.00 1

1000 1500 2000 2500 3000 3500 4000

number of simulations per model
Figure 3: Range and mean of the standard deviation
over all tasks versus the number of simulations per task.

Figure 3 shows the range of the standard deviation of the
PnL distributions (including the mean of the standard de-
viations) over all tasks for an increasing number of simu-
lation paths per task. As a baseline, we also plot the stan-
dard deviation of the PnlL for a BS hedge on GBM paths
with ¢ = 0.1 and ¢ = 0.8. For a smaller number of simula-
tion paths, the mean of the standard deviation is slightly
larger than for a higher number of simulations per model.

Moreover, for a high number of simulations (i.e., > 2000)
per model the maximum and minimum standard devia-
tion of the PnL over all tasks is nearly equal to the corre-
sponding standard deviation of the PnL for a BS hedge.

I BS hedge, vol=0.33
model: 3200 sims
model: 128000 sims

80 -

70

frequency

N w
o o
L L

i
o
L

-0.10 —-0.08 —0.06

-0.04
PnL

—0.02

Figure 4: PnL Distribution for a BS hedge on GBM paths
with ¢ = 0.33 in comparison to hedge performance of
multi-task deep hedging models trained on 100 and
4000 simulated paths per training task.

I BS hedge, vol=0.55
model: 3200 sims
model: 128000 sims

50 -

40

w
o
L

frequency

N
o
L

101

-0.1 0.0 0.1 0.2 0.3
PnL

-0.2

Figure 5: PnL Distribution for a BS hedge on GBM paths
with ¢ = 0.55 in comparison to hedge performance of
multi-task deep hedging models trained on 100 and
4000 simulated paths per training task.

Figures 4 and 5 show some examples of the resulting PnL
histograms from our PNN trained on 32 tasks compared
to the BS strategy for two selected volatility parameters,
o = 0.33 and o = 0.55 (i.e., two selected tasks). We ob-
serve, that our PNN result trained with a large number of
simulations paths is much closer to the BS strategy and
produces similar results in terms of the PnL distribution
than the neural network model trained on a relative small
number of simulated paths.

Fabienne Schmid (RIVACON GmbH), Daniel Oeltz (Fraunhofer SCAI)

Page 5

4.2 Results under a family of models with stochastic volatility

Table 1: Statistics of the PnL for parameterized deep hedging models trained on a different number of simulations.
The training data consists of 32 different GBM models with uniform volatilities between 0.1 and 0.8.

simulations/task mean std std min std max | 1% quantile | 10% quantile
100 -0.051158 | 0.035632 | 0.008580 | 0.050819 | -0.150221 -0.091520
200 -0.051412 | 0.027267 | 0.006760 | 0.019854 | -0.119152 -0.087161
400 -0.051381 | 0.026858 | 0.006385 | 0.020362 | -0.118510 -0.085367
800 -0.051475 | 0.027449 | 0.005303 | 0.027408 | -0.115599 -0.085771
2000 -0.051425 | 0.025895 | 0.003683 | 0.016086 | -0.111582 -0.086758
6400 -0.051455 | 0.025430 | 0.001995 | 0.014037 | -0.108649 -0.085949
In addition, Table 1 summarizes statistics of the numeri- 4.2 Results under a family of models with

cal results of the PnL histograms depending on the num-
ber of simulations. We clearly see that the number of
simulations from the training data influences the over-
all performance of the PNN. Especially, the standard de-
viation of the PnL decreases up to a factor of 1.4 with
an increasing number of simulations for the PNN. From
these results we see, that the PNN is able to learn the
structure and properties of the training data with model
uncertainty.

Next, in Figure 6 we compare for a selected task the re-
sulting PNN approximation (i.e., the multi-task model,
where only the embedding vector is trained on the sim-
ulation paths) to results from a neural network trained
on the single task only as well as the analytical solution
of the corresponding BS strategy, and analyze the perfor-
mance of the method in relation to the number of sim-
ulation paths on which the network was trained on. In
particular, the PnL histograms are shown in the left panel
of Figure 6, while the right panel displays the deep hedg-
ing strategies and the BS strategies § ten days before op-
tion expiry as a function of the underlying price S; (i.e.,
t = 20/365).

In summary, these results highlight the significant impact
of the number of simulation paths on the performance
of the learned strategies. When trained on 1,000 sim-
ulation paths, both the single-task and multi-task net-
works yield results that closely align with the Black-
Scholes (BS) benchmark strategy, exhibiting compara-
ble profit-and-loss (PnL) distributions and well-matching
performance curves. However, when the number of sim-
ulation paths is reduced, the parameterized neural net-
work (PNN) demonstrates a superior ability to capture
the structure of the target problem, even when evalu-
ated on previously unseen data. This suggests that re-
calibrating only the parameter vector on new data not
only accelerates the calibration process relative to con-
ventional neural networks, but also leads to improved
performance. These findings indicate that training the
PNN on a diverse set of tasks—including simulated paths
from various models and historical paths across different
time periods and assets—yields a model family that can
be adapted to new market regimes both efficiently and
robustly.

stochastic volatility

In this section, we evaluate our deep hedging frame-
work with numerical experiments in a more complex
framework, where we consider a family of models with
stochastic volatility. Note that this is to be understood
as a mere test of concept while further application and
calibration to real-world data and a detailed analysis of
the dependency of the observed PnL distributions on the
parameter space is left to future studies.

354

30 4

254

204

15 A

10 4

0.2 0.4 0.6 0.8 1.0 1.2
implied volatility
Figure 7: Distribution of implied volatilities of the
respective Call option evaluated by each of the stochastic
volatility models.

To this end, we consider model paths of the Heston
stochastic volatility model, the Heston model with jumps
and the Barndorff-Nielson-Shephard model, where each
model has been calibrated to market option quotes of
50 different underlyings. In particular, we used option
quotes for typical indices (such as DAX, STOXX50E, S&P
500-index, CAC etc.) as well as option quotes on single
equity indices.

Fabienne Schmid (RIVACON GmbH), Daniel Oeltz (Fraunhofer SCAI)

Page 6

4.2 Results under a family of models with stochastic volatility

frequency
w B v [« ~
o o o o o
| ! | ! |

N
o
s

i
o
L

I BS hedge
single-task
multi-task

0.05 0.10 0.15 0.20

PnL

-0.15 -0.10 -0.05 0.00

140 4

1201

100 1

frequency
o]
o
!

[=)]
=]
L

40

201

N BS hedge
single-task
multi-task

—0.06 —0.04 —0.02 0.00

PnL

—0.12 -0.10 —0.08

140 1

1201

100 1

©
o
L

frequency

[=)]
=]
L

40 -

201

0
—0.05

I BS hedge
single-task
multi-task

—0.03
PnL

—-0.02

—0.01

—0.04

delta

e BSdelta Ke
154 ° single-task delta °
’ e multi-task delta
1.0 4
0.5
0.0 -
—0.5
_10 4
0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
spot
1.04 ¢ BSdelta L2 g
¢ single-task delta
° multi-task delta
0.8
0.6
©
=
(0]
° %
0.4 1 s
.
A
0.2 1
0.0 °
0.85 0.90 0.95 1.00 1.05 1.10 1.15
spot
1.24
e BSdelta .,l
¢ single-task delta
104 © multi-task delta Py
0.8
2 0.6
(0]
°
0.4
0.2 1
0.0 *
0.‘85 0.%30 0.%35 1.60 1.65 1.£L0 1.‘15
spot

Figure 6: The figures on the left side compare PnL distributions for a BS Hedge, a single task network trained on 10
(top), 100 (middle) and 1000 (bottom) paths and the respective multi-task model where only the embedding vector
is learned on the paths. The figures on the right side show the respective deltas ten days before option expiry.

Fabienne Schmid (RIVACON GmbH), Daniel Oeltz (Fraunhofer SCAI)

Page 7

1.0

¥ ® Heston
10.0 4 f
®m Heston with Jumps
* % * BNS
7.5 0.8
*
°.
5.0 o =
B ox x* 0.6
1 * *
2.5 " L B .*. L]
0.0 o o=E L] *oxx 0.4
%9 m* o Lk :
25 ad o . | o x
. * .: e *m FLY *
enNg* L m o
504 * ™ !di. ™ 0.2
* []
....] : [*
*
-751 e Beg,
T T T T 0.0
-20 -10 0 10 20

Figure 8: t-SNE projected embedding vector from
8-dimensional embedding. The marker type encodes the
respective model type, colour represents the ATM call
price of the respective model parameters.

To give an impression on the range of values, we show
in Figure 7 the implied volatility distribution of a Eu-

ropean call option that expires in thirty days with ATM
strike. Figure 8 illustrates, for several tasks, the high-
dimensional embeddings produced by the parameterized
neural network (PNN), visualized using the T-distributed
Stochastic Neighbor Embedding (T-SNE) technique [10].
The resulting structure reveals a clear organization of the
learned parameter representations, which appear to cor-
relate with the ATM call price associated with the re-
spective model parameters, rather than being randomly
or uniformly distributed. Additionally, Table 2 summa-
rizes the statistical properties of the profit-and-loss (PnL)
histograms across tasks. As benchmark strategies, we in-
clude the classical Black-Scholes (BS) delta-hedging ap-
proach, using the realized volatility computed across all
simulated paths for each task, along with variants where
this volatility is shifted by +5 volatility points. The re-
sults indicate that the hedging strategy derived from our
PNN framework consistently outperforms the BS bench-
mark, with the exception of the median PnL variance,
which remains comparable between the two approaches.
This demonstrates the effectiveness of the proposed PNN-
based method under the specific scenario considered.

Table 2: Statistics of variance of PnL for hedging on 40,000 simulated paths for each stochastic volatility model and
three BS models with implied volatilities equal to the realized volatility over all paths as benchmarks. The Deep
Hedging model’s embedding dimension is eight and for the BS model delta we used the realized volatility (rlzd vol)
over the respective paths and shifted volatilities where shift size is +5 and -5 volpoints (vp).

model mean variance
BS, rlzd vol - 5 vp 3.98e-04
BS, rlzd vol 3.87e-04
BS, rlzd vol + 5 vp 3.87e-04
Deep Hedging 2.94e-04

median variance | max variance
4.25e-05 3.98e-02
3.46e-05 3.92e-02
3.74e-05 3.87e-02
3.61e-05 2.52e-02

S5 Summary

The outcome of this study is a novel modeling frame-
work for deep hedging that facilitates accelerated train-
ing in the presence of new market regimes while simulta-
neously enhancing robustness. This modeling approach is
able to learn a family of models and portfolios, and allows
for efficient recalibration of the respective parameters to
new data avoiding overfitting. Closely related to the work
of [7], we have complemented the deep hedging frame-
work, originally designed by [2] for hedging a portfolio
of derivatives using neural networks, for the best of our
knowledge for the first time via task embedding. To that
end, the neural network model has been modified to al-
low for encoding specific tasks using an embedding layer.
For the verification that the new modeling framework is
indeed accurate and efficient we have conducted ideal-
ized test cases. In particular, with a test case for hedging a
short at-the-money European call option position under a
family of GBM models we have validated the stability and
accuracy of the code. It has been shown that the results of
our task embedded framework compare well with analyt-
ical results from the BS framework. For a test of concept,
we have also done simulations using a family of models

with stochastic volatility. To keep the setting as simple as
possible and allow for a precise measurement of the per-
formance of the method we use artificially created data.
The test simulations are promising and show that the pro-
posed method is able to learn hedging strategies from a
set of advanced models and can be stable and robustly
recalibrated to new data. Nevertheless, for future stud-
ies it might be advisable to evaluate the performance of
the deep hedging strategy with embedding on real finan-
cial data and include market frictions such as transaction
costs.

References

[1] A. M. Ozbayoglu, M. U. Gudelek, and O. B. Sezer,
“Deep learning for financial applications: A survey,”
Applied soft computing, vol. 93, p. 106384, 2020.

[2] H. Buehler, L. Gonon, J. Teichmann, and B. Wood,
“Deep hedging,” SSRN Electronic Journal, 2018.

[3] B.Horvath, J. Teichmann, and Z. ZuriZ, “Deep hedg-
ing under rough volatility,” Risks, vol. 9, no. 7, p.
138, 2021.

Fabienne Schmid (RIVACON GmbH), Daniel Oeltz (Fraunhofer SCAI)

Page 8

REFERENCES

(4]

(5]

(6]

[71

J. Schreiber, S. Vogt, and B. Sick, “Task embed-
ding temporal convolution networks for transfer
learning problems in renewable power time series
forecast,” in Joint European Conference on Machine
Learning and Knowledge Discovery in Databases.
Springer, 2021, pp. 118-134.

S. Chen, Y. Zhang, and Q. Yang, “Multi-task learn-
ing in natural language processing: An overview,”
ACM Computing Surveys, vol. 56, no. 12, pp. 1-32,
2024.

R. Caruana, “Algorithms and applications for multi-
task learning,” in ICML. Citeseer, 1996, pp. 87-95.

D. Oeltz, J. Hamaekers, and K. F. Pilz, “Parameter-
ized neural networks for finance,” 2023. [Online].

(81

(9]

[10]

[11]

Available: https://arxiv.org/abs/2304.08883

Y. Zhang and Q. Yang, “A survey on multi-task learn-
ing,” IEEE transactions on knowledge and data engi-
neering, vol. 34, no. 12, pp. 5586-5609, 2021.

W. Schoutens, E. Simons, and J. Tistaert, “A perfect
calibration! now what?” The best of Wilmott, p. 281,
2003.

L. Van der Maaten and G. Hinton, “Visualizing data
using t-sne.” Journal of machine learning research,
vol. 9, no. 11, 2008.

E. Liitkebohmert, T. Schmidt, and J. Sester, “Robust
deep hedging,” Quantitative Finance, vol. 22, no. 8,
pp. 1465-1480, 2022.

Fabienne Schmid (RIVACON GmbH), Daniel Oeltz (Fraunhofer SCAI)

Page 9

https://arxiv.org/abs/2304.08883

	Introduction
	Methodology
	PnL modelling
	Neural network with Embedding

	Models
	Geometric Brownian Motion
	Heston Stochastic Volatility Model
	Heston Stochastic Volatility Model with Jumps
	Barndorff-Nielson-Shephard Model

	Numerical experiments
	Results under a family of GBM models
	Results under a family of models with stochastic volatility

	Summary

